
1 23

Journal of Digital Imaging
The Journal of the Society for Computer
Applications in Radiology

ISSN 0897-1889

J Digit Imaging
DOI 10.1007/s10278-017-9956-7

JavaScript Access to DICOM Network and
Objects in Web Browser

Ivan Drnasin, Mislav Grgić & Goran
Gogić

1 23

Your article is protected by copyright and

all rights are held exclusively by Society

for Imaging Informatics in Medicine. This e-

offprint is for personal use only and shall not

be self-archived in electronic repositories. If

you wish to self-archive your article, please

use the accepted manuscript version for

posting on your own website. You may

further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

JavaScript Access to DICOM Network and Objects
in Web Browser

Ivan Drnasin1
& Mislav Grgić2 & Goran Gogić1

Society for Imaging Informatics in Medicine 2017

Abstract Digital imaging and communications in medi-
cine (DICOM) 3.0 standard provides the baseline for the
picture archiving and communication systems (PACS).
The development of Internet and various communication
media initiated demand for non-DICOM access to PACS
systems. Ever-increasing utilization of the web browsers,
laptops and handheld devices, as opposed to desktop
applications and static organizational computers, lead
to development of different web technologies. The
DICOM standard officials accepted those subsequently
as tools of alternative access. This paper provides an
overview of the current state of development of the
web access technology to the DICOM repositories. It
presents a different approach of using HTML5 features
of the web browsers through the JavaScript language
and the WebSocket protocol by enabling real-time com-
munication with DICOM repositories. JavaScript
DICOM network library, DICOM to WebSocket proxy
and a proof-of-concept web application that qualifies as
a DICOM 3.0 device were developed.

Keywords DICOM .WebSocket . HTTP . HTML5 .

JavaScript . PACS . Teleradiology . Internet

Introduction

Three and half billion people use Internet [1]. Internet services
include e-mail, news services, file transfer, and world wide
web—an information space where documents and other web
resources are identified by Uniform Resource Locators
(URLs), accessed via HyperText Transfer Protocol (HTTP)
protocol, presented as web pages rendered and displayed by
web browser. Web pages are designed in HyperText Markup
Language (HTML), cascading style sheets (CSS), and
JavaScript language. Nowadays, web pages are mostly
accessed by mobile web browser, found in smartphones and
tablets instead of desktop web browsers. Web browsers are
found on all operating systems and on all devices, both hand-
held and desktop. While web is mostly accessed by web
browsers, web services allow access to web via HTTP proto-
col to any HTTP client outside of the web browser and web
pages.

Web Applications

Web applications (web apps) are task-oriented web pages.
They are not meant for sole presentation of web resources
but aimed to accomplish some task and to provide similar user
experience as in the native applications. The main differences
are that the program code for web application resists on a web
server, can be managed remotely for all the clients, and is
executed by the web browser or web server rather than the
operating system itself.

* Ivan Drnasin
ivan.drnasin@infomedica.hr

Mislav Grgić
mislav.grgic@fer.hr

Goran Gogić
goran.gogic@infomedica.hr

1 Infomedica, Research and Development, Split, Croatia
2 Department of Wireless Communications, Faculty of EE and Comp,

University of Zagreb, Zagreb, Croatia

J Digit Imaging
DOI 10.1007/s10278-017-9956-7

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-017-9956-7&domain=pdf

Web apps can be both thin and thick clients. The task can
be executed on a web server and the results (can be) sent back
to a web browser, or the web browser can load data from the
web server or from user input, and execute JavaScript code on
the data. The rationale is that always increasing CPU and
memory power is usually unused on personal computers by
web browsers. Until recently, those resources could be only
used by third-party plug-ins such as Adobe Flash, Java, or
Silverlight. The reason for that lies in the fact that web
browsers are unable to access OS interfaces and are lacking
in performance, due to slow JavaScript code execution.

HTML5 and JavaScript

The HTML5 standard is a successor of HTML4 and
XHTML1 standard. Published in October 2014, HTML5 has
addressed the weaknesses of previous standards, improved
multimedia and graphical support, added various new
JavaScript application programming interfaces (APIs), and
allowed access to peripheral devices. HTML5 standard is de-
signed with low-power footprint and is meant for cross-
platform application development. Such improvements in-
clude raw binary data access via TypedArray data types, full
duplex communication via WebSocket protocol, rendering
pixels in Canvas element, access to GPU via WebGL API,
multithreading via WebWorkers API, and offline data storage
via IndexedDB API and FileSystem API.

The JavaScript language, as an important part of the new
HTML5 standard, was greatly improved and published in
December 2009 in its fifth edition. Parallel with that, web
browser vendors also improved the execution speed of
JavaScript codes and began a race to reach the native speed
of C/C++ languages. Such improvements in HTML standard
and JavaScript execution have boosted single-page web app
development and enabled cross-platform desktop and mobile
application development with web languages (HTML, CSS,
and JavaScript). Such projects like Apache Cordova, React
Native, NativeScript, and Electron framework are very popu-
lar among web developers. Server side programming in
JavaScript has also become popular during the last few years.
According to some relevant surveys, JavaScript is the most
commonly used programming language on earth [2].

HTTP Protocol

HTTP is a unidirectional protocol, built on top of a TCP/IP
protocol. Request is initiated by the client, while the server
processes and returns a response. HTTP allows the request
message to go from the client to the server and then the server
sends a response message to the client. Usually, a new TCP
connection is initiated for an HTTP request and terminated
after the response is received. A new TCP connection needs
to be established for another HTTP request/response.

Web Standards for Medical Imaging

Challenge to access medical imaging repositories (PACS,
Modality, Workstation) via ubiquitous web browsers and
HTTP protocol was even more appealing with the expansion
of web browsers to mobile and tablet devices. Image access
from the palm of the radiologists’ hands is even attractive
today as it was before. Simplicity of the web browser, usually
preinstalled on a device, together with central application
management and deployment, is beneficial both for vendors
and users. Articles from the early nineties dealt with this topic
already; however, the web access to medical images increased
lately, even in closed hospital network systems.

DICOM networks, which are the backbone of medical im-
aging repositories, are built on top of a TCP/IP protocol where
DICOM compliant devices exchange DICOM messages and
objects. To communicate with DICOMdevices, DICOM stan-
dard uses its own network language, which is contained from
DICOM Message Service Elements (DIMSEs). More
DIMSEs create one DICOM network service (Table 1). The
main goal of DICOM communication is data exchange in
strictly defined format and order [3]. DICOM standard data
exchange is service based. DICOM device requesting service
from another DICOM device is labeled as service user class
(SCU), while the service provider class (SCP) label is used for
service provider. All DICOMmessages and objects are binary
data chunks that travel through both networks.

DICOM standard officials were aware of the global de-
mand for web access to DICOM repositories, leading to the
development of Web Access to DICOM Objects (WADO)
standard and its ratification in 2004. WADO allows access to
DICOM objects on web-enabled DICOM server through the
Hypertext Transfer Protocol/Secure (HTTP/S) protocol using
DICOM unique identifiers (UIDs) (Fig. 1). Data may be re-
trieved either in a presentation-ready format (JPEG or GIF) or
in a native DICOM format. WADO does not support web
searching of DICOM repositories [4, 5].

The Medical Imaging Network Transport (MINT) group
was formed in 2010 to improve transfer speed of DICOM
studies, eliminate need for DICOM routing, and address some

Table 1 DIMSE network services

Service Description

C-ECHO Connection check

C-STORE DICOM objects store

C-FIND Query o DICOM objects

C-GET Transfer of DICOM objects, where receiver initiates
connection

C-MOVE Transfer of DICOM objects, where receiver does
not need to initiate connection

J Digit Imaging

Author's personal copy

WADO weaknesses [6]. The MINT proposal was rejected by
the DICOM committee [7].

WADO by means of Web Services (WADO-WS) supple-
ment was added to the DICOM standard in 2011 [8]. WADO-
WS defines Web Services for providing DICOM images and
other persistent objects to an Electronic Medical Record/
ElectronicHealth Record (EMR/EHR) system. The supplement
deals only with retrieval, corresponding to the evolution of the
existingWADO toWeb Services. Query and notificationmech-
anisms are not defined within this supplement. Both native
DICOM and rendered images can be retrieved as well as total
or partial metadata of the object without the image pixels.

WADO by means of RESTful Services (WADO-RS) is
another supplement to the DICOM standard, added in 2013
[5]. It defines representational state transfer (REST) ser-
vices for providing DICOM images and other persistent
objects to an electronic medical record/electronic health
record (EMR/EHR) system. This supplement deals with
retrieval, corresponding to the evolution of the existing
WADO to RESTful Services. Native DICOM can be re-
trieved, as well as it can separate bulk data, pixel data, or
metadata of the object.

Query based on ID for DICOM Objects by RESTful
Services (QIDO-RS) defines search for DICOM studies, se-
ries and instances, by specified search parameters. It is also a
part of DICOM standard since 2013 [5].

Demand for both retrieving as well as pushing of new
DICOM objects to DICOM repositories was stated as impor-
tant on DICOM working groups. Store Over the Web
RESTful Service (STOW-RS) enables storing of specific in-
stances to the DICOM server and was standardized in 2013
[5].

UPS-RS Worklist Service defines a RESTful interface to
the UPS SOP classes, which allows to query, retrieve, and
update work items. It also describes how to open event chan-
nel through WebSocket connection for receiving event report
messages.

DICOMRSCapabilities Service defines discovering of the
supported services of a particular DICOMweb endpoint.
Make the HTTP OPTIONS query against an endpoint, and a
WADL response will be returned explaining the various op-
tions and what it supports [9].

All these web services are known as DICOMweb, the web
standard for medical imaging [9].

DICOMweb Benefits

Web services have been already proved in real-world applica-
tions. DICOMweb inherited all benefits and limitations from
web services, REST architecture, and HTTP protocol. They
have numerous benefits, such as basic and digest authentica-
tion, authorization header, custom headers, different status
codes, reduced number of DICOM negotiations over large
DICOM dataset (they potentially pose a problem for many
existing implementations [10]), ability to consume
DICOMweb APIs in non-browser clients, easy integration
via standard HTTP verbs (GET, PUT, POST, DELETE), sim-
ple API creation, caching control, TLS encryption, compres-
sion, huge developer ecosystem, and shorter learning curve
than DICOM DIMSE services.

DICOM Network Benefits

DICOM network protocol, on the other side, is traditionally
used in numerous institutions, radiology modalities, and non-
radiology devices such as ECG and endoscopy. It also acts as
interface to different workstations: advanced image process-
ing or CAD systems. DICOM protocol also addresses encryp-
tion, authentication, and digital signatures [11]. A crucial fea-
ture is bidirectional data movement across DICOM network
via DIMSE C-STORE, C-MOVE, and C-GET operation
which is not only used in local networks but also in regional
and national networks.

DICOMweb has several constraints compared to Bclassical^
DICOM. It is not possible to implement DICOM SCPs, for
example, C-STORE service. DICOM data cannot be pushed
from PACS toWADO clients—send new images to client, such
as emergency angiography data, or postprocessing. C-MOVE
is not possible via current DICOMweb solutions. It is not pos-
sible to perform C-ECHO. Direct access to DICOMmodalities
such as CT, MR, or XA is not possible.

Those constraints limit the full potential of DICOM ser-
vices and can limit radiology workflow in web browsers.
Also, upgrading the current DICOM system to DICOMweb
can take some time, especially for modalities, which can have
up to 20 years’ lifecycle.

In this paper, we propose an alternative approach to access the
DICOM network directly via web browsers. Such system can
also be an upgrade to the existing DICOMweb services.
Together with the benefits of using DICOM web services, we

Fig. 1 WADO request

J Digit Imaging

Author's personal copy

https://dicomweb.hcintegrations.ca/services/capabilities/

propose adding another layer of DICOM communication in web
browsers which will address benefits of classical DICOM net-
work. Such system will act as a DICOM 3.0 compliant device
inside web browsers, which will be able to send and retrieve data
from any DICOM device, including modalities. It will be able to
provide both SCP and SCU for the DIMSE network services in
web browsers. Therefore, we propose the following:

1. Implementation of DICOM 3.0 standard in JavaScript
language

2. Communication with DICOM network via WebSocket
protocol

3. Implementation of DICOM SCP and SCU in web browsers
4. Full compatibility with existing DICOM infrastructure,

without need for upgrade

Materials and Methods

JavaScript DICOM Network Library

The DICOM network library is a backbone of any DICOM
communication system and is responsible for handling com-
plexities of DIMSE services. Such library should work well
with binary data and TCP protocol. To develop such library
for web browsers, one must use JavaScript language, the only
programming language available in web browsers.

The mDCM C# DICOM library [12] was used as a role
model for class structures and program flow. C#-based
DICOM library is chosen since syntax is much closer to
JavaScript than C/C++. The library is designed to support all
DICOM PDUs (Table 2). PDU is a core element of the
DICOM network library—data packets exchanged at lower
level between peers. PDU contains control information and
user data. PDUs are constructed by mandatory fixed fields
followed by optional variable fields that contain one or more
items and/or subitems [13]. PDUs can be read from incoming
connection or created for sending back to the connection.
jDataView library [14] was used to simplify creation of some
PDUs (Fig. 2). For P-Data-TF PDU, DataView API was used.

The DataView API provides low-level interface for reading
and writing multiple number types in an ArrayBuffer irrespec-
tive of the platform’s endianness [15].

Typed array views are in the native byte-order of user plat-
form, while DataView byte-order can be controlled. By de-
fault, it is big-endian, but can be set to little-endian, which we
used for this project. DICOM reserves little-endian as its de-
fault byte-ordering type. It means that all DICOM applica-
tions, regardless of architecture, must understand and process
little-endian byte-order [3].

PDUs were received from WebSocket connection (de-
scribed in the next section) and were processed in DICOM
network base object (Fig. 3).

P-Data-TF differs from other PDU types; it is the only PDU
responsible for transmitting the actual data. P-Data-TF sends
DICOM objects, cut into chunks known as Bprotocol data
value^ (PDV) [3]. The code detects PDVs in P-DATA-TF
PDU and processes chunk by chunk—appending chunks in
temporary byte buffer. The system detects the received PDVs:
are they DICOM command or DICOM file? Upon receiving
the last PDV fragment, the system finishes appending the
buffer and saves the DICOM file or executes the DICOM
command. If needed, DICOM response is sent back through
WebSocket connection (Fig. 4).

DICOM to WebSocket Proxy

Since JavaScript in web browsers does not support access to
TCP/IP protocol or DICOM protocol, WebSocket protocol
was used to communicate with the DICOM network, via
DICOM toWebSocket traversal bridge (proxy). DICOMmes-
sages and objects were transported from the DICOM network
to the WebSocket network, and vice versa.

WebSocket is a web technology providing full-duplex bi-
directional communication channels over a single TCP con-
nection, meaning that web servers can push data to web clients
in real time, thus making possible implementation of DICOM
SCP services. The WebSocket protocol was standardized by
the Internet Engineering Task Force (IETF) as request for
comments (RFCs) 6455 in 2011 [16], and the WebSocket
API is being standardized by the W3C [17]. WebSocket dif-
fers from TCP in that it enables a stream of messages instead
of a stream of bytes, real-time push messages, smaller mes-
sage header than HTTP, and generally reduced latency over

Table 2 List of supported DICOM PDUs

PDU

A-Associate-RQ PDU

A-Associate-AC PDU

A-Associate-RJ PDU

P-Data-TF PDU

A-Release-RQ PDU

A-Release-RP PDU

A-Abort PDU

Fig. 2 Simple A-Associate-RJ PDU created with jDataView

Fig. 3 PDU received from WebSocket connection

J Digit Imaging

Author's personal copy

HTTP. That said, WebSocket is a protocol built for high
throughput of messages from both ends.

Proxy was implemented in JavaScript language, by using
the Node.js platform [18] (Fig. 5). Node.js is a platform built
on Google Chrome’s JavaScript runtime for easy building of
fast, scalable network applications on all the operating sys-
tems [19]. Node.js uses an event-driven, non-blocking input/
output (I/O) model that makes it lightweight and efficient,
suitable for data-intensive real-time applications that run
across distributed devices. Node.js WebSocket library ws
[20] was used for WebSocket communication. Node.js net
module, which provides asynchronous network wrapper for
creating both TCP servers and clients, was used.

The proxy server listens on two ports for incoming
DICOM or WebSocket connections. In the case of DICOM
connection, binary DICOMmessages are transferred from the
TCP port to the WebSocket connection (Fig. 6). PDUs are
received as chunks, not as a single message. They need to be
concatenated. By using PDU length information, the proxy
knows what PDU size to expect from incoming TCP connec-
tion. When all chunks are received, PDU is sent to the web
client over WebSocket connection.

Proxy and JavaScript DICOM network libraries are avail-
able to download as open-source project [21, 22]. The tools

that were used are Microsoft Visual Studio 2012, Sublime
Text 2 and CodeAnywhere code editor. WebSocket connec-
tion in POC systemwas not secured viaWebSocket over SSL/
TLS (WSS).

Testing Methods

The system was tested against different DICOM devices:
ClearCanvas Server and Workstation [23], Osirix Viewer
[24], E-Film [25], Fellow Oak DICOM toolkit [26],
Dcm4Chee [27], DCMTK toolkit [28], and Dicom Objects
toolkit [29].

Tests should answer the question, Bare JavaScript library
and WebSocket protocol able to deal with DICOM network
and DICOM traffic particularities: large DICOM files and
multiple smaller DICOM files, e.g. CR and CT images?^

Before answering this question, it is necessary to say that
the system is built as proof of concept, meaning that optimi-
zations have not taken place, security protocols have not been
implemented, concurrency problems have not been addressed,
and special JavaScript features were not used to speed up
execution time.

Download time from PACS was compared against the
WADO client and the DICOM client (Fig. 7). PACS was
installed together with DICOM to the WebSocket proxy and
the WADO server on Windows Server 2012 (Intel i7-4770,
32 GB RAM) with 100/100 Mbps of Internet bandwidth.
Clients (Windows 7, Intel Xeon E7525, 8 GB RAM) were
tested with different download speeds: localhost, 1 Gbps
Intranet, 50-Mbps cable Internet and 7-Mbps Wi-Fi Internet.
ClearCanvas Image Server 2.0 was used as a PACS, while
ClearCanvas Workstation 2.0 was used as DICOM client.
We developed a simple WADO server with fo-dicom library
[25]. Images were pre-cached on the WADO server by send-
ing them from ClearCanvas PACS. Every WADO request
would read a DICOM file from the file system and stream it
to the WADO client. The WADO client was a simple
JavaScript application using XHR requests to fetch images.
The client could be tuned to execute one to four simultaneous
XHR requests. Test DICOM cases were sent from PACS to
clients. Seconds were used as measure parameter.

Fig. 6 TCP server receives DICOM PDU chunks

Fig. 5 Node.js proxy

Fig. 4 WebSocket requests

J Digit Imaging

Author's personal copy

Results

The JavaScript DICOM network library was used to develop
proof-of-concept (POC) application [21]. The POC system
should act as a DICOM device that works in any web browser
supporting WebSockets (Fig. 8). POC should be able to initi-
ate and receive DICOM connections from and to any DICOM
3.0 compatible device by using the JavaScript DICOM net-
work library and WebSocket connection to proxy server.
Several DICOM classes were developed for demonstration:
C-ECHO SCU/SCP, C-STORE SCP, C-FIND SCU, and C-
MOVE SCU (Table 3). The system accepts all storage SOP
classes and all transfer syntaxes, except big-endian. Decoding
of compressed transfer syntaxes can be supported via third-
party JavaScript libraries [30].

DICOM to WebSocket proxy can listen on TCP port
for DICOM connections and translating them to
WebSocket connection—server mode. It is also capable
of connecting to the TCP port of DICOM devices to
send DICOM messages from WebSocket connection—

client mode. This device is lightweight, fast, and simple
although not optimized for production use (security,
concurrency, stability). It is fully compatible with the
existing DICOM systems without the need of upgrading
them. Therefore, it can be used with legacy PACS sys-
tems and modern vendor neutral archive (VNA)
systems.

C-FIND SCU: Query Patient, Study, and Series

The POC system is capable of issuing C-FIND query on
DICOM devices that support C-FIND SCP. Patient and
series query level is not implemented in the POC sys-
tem but is straightforward. Query parameters are cur-
rently not supported, so the system will return all stud-
ies from the DICOM device, if possible. C-FIND was
tested against ClearCanvas PACS and Workstation,
Osirix workstation, Medical Connection public DICOM
server (Fig. 9).

Fig. 8 Proof-of-concept system
screenshot

Fig. 7 Testing configuration for
DICOM file transfer

J Digit Imaging

Author's personal copy

C-STORE SCP: Receive BPushed^ DICOM Data

The POC system can receive DICOM Bpush^ messages: C-
STORE. POC is flexible in storing binary DICOM data when
C-STORE response is received (Fig. 10). Data can be
downloaded to the computer’s hard disk, kept temporarily in
the computer random access memory (RAM) or stored in a
web browser offline storage: Indexed Database (IndexedDB)
or FileSystem API. IndexedDB is supported by all major web
browsers [31] and supports asynchronously storing and re-
trieving blobs binary large objects of data in key-value fash-
ion. Key-value database for DICOM use have already been
investigated with the CouchDB database [32].

For this research, the POC system uses Google Chrome
FileSystem API, supported by 44.8% of web browsers [33].
Although not standardized by W3C, the FileSystem API pro-
vides a simple way to create, read, navigate, manipulate, and
write blobs of data to a sandboxed section of the user’s local
file system asynchronously [34]. Therefore, incoming
DICOM files from C-STORE connections were written asyn-
chronously to sandboxed file system, by using Web Workers.

C-MOVE SCU: the system was used to C-MOVE images
from ClearCanvas PACS to other DICOM workstations—
Osirix and ClearCanvas Workstation.

C-ECHO SCU/SCP: the system was used to test DICOM
BPing^ with various DICOM devices successfully.

Fig. 9 C-Find results from
Medical Connections public
DICOM server

Table 3 Main features of JavaScript DICOM library and proxy

List of features

Fully DICOM-compliant JavaScript DICOM library

DICOM protocol to WebSocket protocol function

DICOM Bping^ SCU and SCP service

Near Bnative^ C-STORE SCP performance

C-MOVE SCU—Moving of studies between DICOM applications

C-FIND SCU—Search for patients, studies, series and instances

Support for all web storage options Fig. 10 Options to store DICOM data

J Digit Imaging

Author's personal copy

DICOM File Transfer

Although we tested the system with many different
DICOM files, we recorded only few image transfer ses-
sions, to prove that the system is feasible in various net-
work settings.

CT study (Table 4), with 271 uncompressed images
(512 × 512 pixels, 514 KB size per image) and DX study
(Table 5) with 6 uncompressed images (2787 × 2472 pixels,
∼14 MB per image) was used for testing.

High load test was also performed (Table 6) by sending
2391 uncompressed CT images (512 × 512 pixels, 514 KB
size per image) to clients in LAN network only. For that test,
the WADO client was using four simultaneous XHR requests
to download four images per request, which improved results
and showed benefits of HTTP protocol.

Discussion

The system qualifies as a DICOM 3.0 capable device in web
browsers by successfully performing given tasks.
Development focus was on C-STORE SCP and C-FIND
SCU method: performance and compatibility with different
DICOM implementations and devices. System has answered
several important topics from the beginning: implementation
of DICOMDIMSE network services in JavaScript language is

possible and communication with the DICOMnetwork via the
WebSocket protocol is feasible. The POC system is compati-
ble with various open-source DICOM implementations and
some popular proprietary implementations.

Performance

We are aware that the C-STORE performance test is some-
what limited. We tried to give an overview of the system
performance in various network environments, trying to avoid
and overcome BWebSocket vs REST^ debate. System perfor-
mance tests are conducted to prove that the system can deal
with DICOM traffic via WebSocket connection. The results
prove that such implementation is feasible.

Tests also show positives of WADO-based systems for
large studies of transfer, although results are much helped by
pre-caching, multiple XHR requests and storing in RAM only.

Besdes, the system’s C-STORE SCP performance in limit-
ed testing environment, in terms of speed, is comparable to
native DICOM protocol. Although we recorded the test only
against ClearCanvas DICOM implementation, which is based
on customized mDcm library, the system worked in the same
manner with other DICOM implementations.

Securing WebSockets

WebSocket protocol, just like HTTP, is not safe by de-
fault. It needs effort to keep WebSocket applications se-
cure. WebSocket traffic should be encrypted by using
WSS. It protects against man-in-the-middle attacks.
WebSockets reuse the same authentication information
that is found in the HTTP request when the WebSocket
connection was made [35]. The system should validate
DICOM data, e.g., only allow DICOM and authentication
data to pass through. Origin header should be used as an
advisory mechanism; it helps differentiate WebSocket re-
quests from different locations and hosts, but developers
should not rely on it as a source of authentication [36].
DOS attack should also be handled by DICOM to
WebSocket proxy. The WebSocket protocol does not han-
dle authorization and/or authentication. Application-level
protocols should handle that separately in case sensitive
data is being transferred. Tunneling DICOM connections

Table 4 C-Storing 271 CT images 512 × 512, uncompressed (514 KB
per image), in seconds

Client download speed Client

DICOM DICOM JS WADO

Localhost 12.9 12.4 6.2

1 Gbps 22.3 10.5 7.1

50 Mbps 86.8 43.9 38.7

7 Mbps – 172.9 165.6

Storage Filesystem FileSystem API RAM

Table 5 C-Storing 6 DX images 2787 × 2472, uncompressed (14 MB
per image), in seconds

Client download speed Client

DICOM DICOM JS WADO

Localhost 3.0 9.1 6.9

1 Gbps 10.5 18.5 5.5

50 Mbps 23.4 15.5 16.2

7 Mbps – 78.1 101.1

Storage Filesystem FileSystem API RAM

Table 6 C-Storing 2391CT images 512 × 512, uncompressed (514 KB
per image), in seconds

Client download speed Client

DICOM DICOM JS WADO

LAN 231 210 110

Storage Filesystem FileSystem API RAM

J Digit Imaging

Author's personal copy

through WebSocket proxy can put DICOM network on
risk as it would enable access to services in the case of
a Cross Site Scripting attack; therefore, data coming
through a WebSocket connection should be always vali-
dated [36].

Proxy Considerations

Node.js proxy is a feasible technology for proxy system, be-
cause it is proved in real-world applications and used bymany
world class systems, like PayPal, Uber, Netflix, and others.
Node.js developers also enjoy a huge module ecosystem,
known as npm. Benefit of Node.js JavaScript environment is
that it can reuse the same JavaScript DICOM network library
for server-based operations.

Several problems were encountered during the develop-
ment phase: DICOM TCP packet detection in Node.js and
SCU to SCP switching methods with Node.js proxy.
Sometimes, larger PDU sizes can reset TCP connection to
DICOM clients. When sending smaller chunks of data, like
compressed CT images, problems do not occur. During the
initial testing phase, with older Node.js versions (0.12) and
older WS library version (0.6.5), problems did not occur.
Problems will further be investigated and resolved. For the
production system, security upgrade is needed, which imple-
ments all WebSocket security features. Concurrency should
also be addressed.

Conclusions

It is technologically possible to develop DICOM device ex-
clusively with JavaScript language. The only real problem
was the TCP network access and that was overcome with
WebSocket protocol. The WebSocket protocol enables devel-
opment of DICOM real-time applications. This paper shows
that access to DICOM devices with JavaScript language from
a web browser is fast, reliable, and backward DICOM com-
patible. To our knowledge, a new type of DICOM web appli-
cation is presented.

DICOM to WebSocket proxy proves to be a simple
DCIOM upgrade option that enables all DICOM systems to
communicate via the WebSocket protocol with JavaScript
DICOM network library.

The JavaScript DICOM network library can be further op-
timized in terms of speed, compatibility, embeddability, sim-
plicity, and better object-oriented library core. Unit test should
be added. By using new JavaScript ES6 features or specific
JavaScript subsets like asm.js [37], processing speed compa-
rable to native DICOM C++/C# applications could be
achieved. We will also investigate options to compile C++
and C# DICOM libraries to JavaScript via specific tools like
Emscripten [38] and JSIL [39].

For further research, the system will be optimized as men-
tioned. C-FIND SCU will be upgraded with query parameters
and all search levels. C-STORE SCP storage will be upgraded
to IndexedDB API, which means that the system will index
DICOM data. Therefore, C-STORE SCU and C-FIND SCP
function could be implemented to send data back to the
DICOM applications. We will also consider Web real time
communication (RTC) API to enable web-based peer to peer
DICOM content sharing.

In terms of connectivity, content sharing, device access,
software accessibility, software updates, and user reach, the
JavaScript DICOM network library with DICOM TCP to
WebSocket proxy presents an optimal web access upgrade to
the existing DICOM and DICOMweb applications.

References

1. Internet live stats, www.internetlivestats.com/internet-
users/#sources—Last accessed Jan 10, 2017

2. Stack Overflow Developers Survey 2016, http://stackoverflow.
com/research/developer-survey-2016#developer-profile-
experience – Last accessed Jan 10, 2017

3. Pianyhk, OS, DICOM practical introduction and survival guide,
Springer, 2008

4. DICOMPart 18, Supplement 85,Web Access to DICOMPersistent
Objects (WADO), ftp://medical.nema.org/medical/dicom/2011
/11_18pu.pdf - Last accessed Jan. 6, 2015

5. Lipton P, Nagy P, Sevinc G: Leveraging internet technologies with
DICOM WADO. J Digit Imaging 25:646–652, 2012

6. Medical Imaging Network Transport, https://code.google.
com/p/medical-imaging-network-transport/—Last accessed
Dec. 11, 2014

7. Clunie D: Framing big study problem, http://dclunie.blogspot.
com/2011/06/framing-big-study-problem.html—Last accessed
Jan. 15, 2015

8. DICOM PS3.18 2015a—Web Services, http://dicom.nema.
org/medical/dicom/current/output/pdf/part18.pdf - Last accessed
Feb 22, 2015

9. DICOMweb, https://dicomweb.hcintegrations.ca/services/—Last
accessed Jan 10, 2017

10. Clunie D: How many (medical image exchange) standards can
dance on the head of a pin?, http://dclunie.blogspot.hr/2016/03
/how-many-medical-image-exchange.html—Last accessed Jan 10,
2017

11. DICOM PS3.15 2013—Security and system management profiles,
http://dicom.nema.org/dicom/2013/output/chtml/part15/PS3.15.
html, Last accessed Jan 10, 2017

12. Dillion C: mDCM DICOM library, https://github.com/fo-
dicom/mdcm—Last accessed Jan 10, 2017

13. DICOM upper layer protocol for TCP/IP data units structure,
http://dicom.nema.org/dicom/2013/output/chtml/part08/sect_9.3.
html—Last accessed Jan 10, 2017

14. jDataView, https://github.com/jDataView/jDataView—Last
accessed Jan 10, 2017

1 5 . D a t a V i e w , h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n -
U S / d o c s / We b / J a v a S c r i p t / R e f e r e n c e / G l o b a l _
Objects/DataView—Last accessed Jan 10, 2017

J Digit Imaging

Author's personal copy

http://www.internetlivestats.com/internet-users/%23sources
http://www.internetlivestats.com/internet-users/%23sources
http://stackoverflow.com/research/developer-survey-2016#developer-profile-experience
http://stackoverflow.com/research/developer-survey-2016#developer-profile-experience
http://stackoverflow.com/research/developer-survey-2016#developer-profile-experience
ftp://medical.nema.org/medical/dicom/2011/11_18pu.pdf
ftp://medical.nema.org/medical/dicom/2011/11_18pu.pdf
https://code.google.com/p/medical-imaging-network-transport/
https://code.google.com/p/medical-imaging-network-transport/
http://dclunie.blogspot.com/2011/06/framing-big-study-problem.html
http://dclunie.blogspot.com/2011/06/framing-big-study-problem.html
http://dicom.nema.org/medical/dicom/current/output/pdf/part18.pdf
http://dicom.nema.org/medical/dicom/current/output/pdf/part18.pdf
https://dicomweb.hcintegrations.ca/services/
http://dclunie.blogspot.hr/2016/03/how-many-medical-image-exchange.html
http://dclunie.blogspot.hr/2016/03/how-many-medical-image-exchange.html
http://dicom.nema.org/dicom/2013/output/chtml/part15/PS3.15.html
http://dicom.nema.org/dicom/2013/output/chtml/part15/PS3.15.html
https://github.com/fo-dicom/mdcm
https://github.com/fo-dicom/mdcm
http://dicom.nema.org/dicom/2013/output/chtml/part08/sect_9.3.html
http://dicom.nema.org/dicom/2013/output/chtml/part08/sect_9.3.html
https://github.com/jDataView/jDataView
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView

16. The WebSocket protocol specification, Internet Engineering Task
Force http://tools.ietf.org/html/rfc6455—Last accessed Jan. 15,
2015

17. The Websoket API, World Wide Web Consortium http://www.w3.
org/TR/2011/WD-websockets-20110929/—Last accessed Jan. 15,
2015

18. Nodejs, https://nodejs.org/—Last accessed Apr. 12, 2015
19. Chaniotis IK, Kyriakou KID, Tselikas ND: is Node.js a viable op-

tion for building modern web applications? A performance evalua-
tion study. Computing 1–22, 2014

20 . ws : a node . j s web socke t l i b r a r y, h t t p s : / / g i t h ub .
com/websockets/ws—Last accessed Feb 12, 2015

21. JavascriptAccessToDicomObjects library, https://bitbucket.
org/willy_skipper/javacriptaccesstodicomobjects—Last accessed
March 18, 2016

22. Dicom to WebSocket library, https://bitbucket.org/willy_
skipper/dicom2websocket—Last accessed March 18, 2016

23. Clear Canvas, https://github.com/ClearCanvas/ClearCanvas—Last
accessed Feb 12, 2015

24. Osirix Viewer, http://www.osirix-viewer.com/—Last accessed
March 18, 2016

25. E-Film, https://estore.merge.com/na/index.aspx—Last accessed
March 18, 2016

26. Fellow Oak DICOM for .NET, https://github.com/fo-dicom/fo-
dicom—Last accessed March 18, 2016

27. Dcm3che, http://www.dcm4che.org/—Last accessed March 18,
2016

28. DCMTK toolkit, http://dicom.offis.de/dcmtk.php.en—Last
accessed March 18, 2016

29. DicomObjects DICOM toolkit, https://www.medicalconnections.
co.uk/DicomObjects—Last accessed March 18, 2016

30. Daikon, https://github.com/rii-mango/Daikon - Last accessed
Jan 10, 2017

31. IndexedDB API usage, http://caniuse.com/#feat=indexeddb - Last
accessed March 18, 2016

32. Rascovsky SJ, Delgado JA, Sanz A, Calvo VD, Castrillom G:
Informatics in radiology: use of CouchDB for document-based
storage of DICOM objects. Radiographics, 32(3), 913–927, 2012

33. Filesystem & FileWriter API usage, http://caniuse.com/#search=
filesystem—Last accessed Feb 12, 2015

34. Google Chrome Storage API, https://developer.chrome.
com/apps/app_storage—Last accessed Feb 12, 2015

35. WebSocket authentication, http://docs.spring.io/spring-
securi ty/s i te /docs/current / reference/html/websocket .
html#websocket-authentication—Last accessed Jan 10, 2017

3 6 . We bS o c k e t s e c u r i t y, h t t p s : / / d e v c e n t e r . h e r o k u .
com/articles/websocket-security—Last accessed Jan 10, 2017

37. Asm.js, low-level subset of JavaScript, http://asmjs.
org/spec/latest/—Last accessed Feb 12, 2015

38. Emscripten, https://github.com/kripken/emscripten—Last accessed
Jan 10, 2017

39. JSIL, http://jsil.org—Last accessed Jan 10, 2017

J Digit Imaging

Author's personal copy

http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/2011/WD-websockets-20110929/
http://www.w3.org/TR/2011/WD-websockets-20110929/
https://nodejs.org/
https://github.com/websockets/ws
https://github.com/websockets/ws
https://bitbucket.org/willy_skipper/javacriptaccesstodicomobjects
https://bitbucket.org/willy_skipper/javacriptaccesstodicomobjects
https://bitbucket.org/willy_skipper/dicom2websocket
https://bitbucket.org/willy_skipper/dicom2websocket
https://github.com/ClearCanvas/ClearCanvas
http://www.osirix-viewer.com/
https://estore.merge.com/na/index.aspx
https://github.com/fo-dicom/fo-dicom
https://github.com/fo-dicom/fo-dicom
http://www.dcm4che.org/
http://dicom.offis.de/dcmtk.php.en
https://www.medicalconnections.co.uk/DicomObjects
https://www.medicalconnections.co.uk/DicomObjects
https://github.com/rii-mango/Daikon
http://caniuse.com/#feat=indexeddb
http://caniuse.com/#search=filesystem
http://caniuse.com/#search=filesystem
https://developer.chrome.com/apps/app_storage
https://developer.chrome.com/apps/app_storage
http://docs.spring.io/spring-security/site/docs/current/reference/html/websocket.html#websocket-authentication
http://docs.spring.io/spring-security/site/docs/current/reference/html/websocket.html#websocket-authentication
http://docs.spring.io/spring-security/site/docs/current/reference/html/websocket.html#websocket-authentication
https://devcenter.heroku.com/articles/websocket-security
https://devcenter.heroku.com/articles/websocket-security
http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/
https://github.com/kripken/emscripten
http://jsil.org

	JavaScript Access to DICOM Network and Objects in Web Browser
	Abstract
	Introduction
	Web Applications
	HTML5 and JavaScript
	HTTP Protocol
	Web Standards for Medical Imaging
	DICOMweb Benefits
	DICOM Network Benefits

	Materials and Methods
	JavaScript DICOM Network Library
	DICOM to WebSocket Proxy
	Testing Methods

	Results
	C-FIND SCU: Query Patient, Study, and Series
	C-STORE SCP: Receive “Pushed” DICOM Data
	DICOM File Transfer

	Discussion
	Performance
	Securing WebSockets
	Proxy Considerations

	Conclusions
	References

